
00 NOLTR 69-47U,.

A GENERALIZATION TO TURBULENT BOUNDARY
LAYERS OF MANGLER's TRANSFORMATIONBETWEEN AXISYMMETRIC AND TWO-DIMENSIONAL LAMINAR BOUNDARY

LAYERS

BreaI Tetervin

12 JUNE 1969

NOL
UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

ATTENTIONI-.

O This document has been approved for
z public release and sale, its distribution

is unlimited.

K3'



NOLTR 69-47

A GENERALIZATION TO TURBULENT BOUNDARY LAYERS
OF MANGLER'S TRANSFORMATION BETWEEN AXISYMMETRIC

AND TWO-DIMENSIONAL LAMINAR BOUNDARY LAYERS

Prepared by:
Neal Tetervin

ABSTRACT: With the restriction that the friction coefficient is
expressible as a power function of the local boundary-layer
Reynolds number, the Mangler transformation between axisymmetric
and two-dimensional laminar boundary-layer flow is generalized
to turbulent flow. Relations are obtained between turbulent
boundary-layer quantities in an axisymmetric flow and those at
corresponding points in a substitute two-dimensional flow. The
transformation is applied to the supersonic turbulent boundary
layer on a cone with an attached shock wave and yields simple
relations between boundary-layer quantities for a cone and those
for a corresponding flat-plate flow. A non-dimensionalization
of the equations of continuity, motion, and total-enthalpy gives
the variation with Reynolds number of a number of turbulent
boundary-layer quantities.
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A Generalization to Turbulent Boundary Layers of Mangler's
Transformation Between Axisymmetric and Two-Dimensional Laminar
Boundary Layers

This report presents a derivation of a method for obtaining the
properties of a turbulent boundary layer on a body of revolution
from the properties on a corresponding two-dimensional body. The
method is a generalization to turbulent flow of Mangler's well-
known transformation for laminar flow; Mangler's transformation
is a special case of the generalized transformation.

This work was funded by the Naval Air Systems Command, AIRTASK No.
320/292/69 R009 02 03.

E. F. SCHRFITER
Captain, USN
Commander

2

L. H. SCHINDEL
By direction

I
ii

-k



NOLTR 69-47

CONTENTS
Page

LIST OF SYMBOLS ....................... . ................. iv

INTRODUCTION .. .............................. 1
ANALYSIS ......... . . . . . . . . . . ... I .. . . . .

Transformation between axisymmetric and two-dimensional flow. 1
Non-dimensional form of equations............................ 10
Relation between boundary-layer quantities in axisymmetric

and in two-dimensional flow.....o......................... 14
Application to cones in supersonic flow with attached nose

shock ............................ .. . ... .............. . 17

DISCUSSION ................... ......... ............. . 0... 26

REFERENCES ..................................... ............ . 29

iii



NOLTR 69-47

LIST OF SYMBOLS

a = tangent of half angle of cone

A = surface area of conew
wcf = local friction coefficient w

2

CF = average friction coefficient of cone (eq. 87)

a = enthalpy

H = velocity profile shape parameterSu2

I = total enthalpy, h + U

k = constant in friction formula (eq. 42)

L = reference length

M = Mach number

n = exponent in friction formula (eq. 42)

p = static pressure

q = exponent (eq. 45)
Q =-

r = recovery factor

rw = radius of body of revolution

s = exponent (eq. 45)
Ue

Re8 = e

e
uL

Re =-0-
L 0%x

Re = e
X Ve

Qw
St = local Stanton number

PTeUe(ia-iw)

ST = average Stanton number on cone (eq. 95)
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T = temperature

u = velocity parallel to surface

v = velocity perpendicular to surface

x = distance along surface

y = distance from surface

P u (l ! dy

o QeUe [

= velocity or temperature boundary-layer thickness,

whichever is larger

6* = f (1 - P u) dy

o PeUe

6u = 6( - u dy

0 Ue

o PeUe Ue

u  = _ (1 -- ) dy
O Ue Ue

K = longitudinal curvature of surface

P = viscosity

V = 1 ,
P

T = P UI-.,

T = stream function

v
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Supeiscripts

7 = time mean value of

0' = difference between time ean and instantaneous value of ( )

Subscripts

() = value of ( ) at surface with no heat transfera

()e = value of ( ) at outer edge of boundary layer

()r = value of ( ) at reference enthalpy

()w = value of ( ) at surface

(i = value of ( ) in two-dimensional flow

() = value of ( ) in free stream far from body

0* = non-dimensional value of (

vi
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INTRODUCTION

In Reference 1, Mangler gives a method for relating the

properties of a laminar boundary layer on a body of revolution

to those of a corresponding two-dimensional flow. The distribution

of the radius along the axis of the body of revolution is used

to obtain a distribution of velocity outside the boundary layer

in a two-dimensional flow from the distribution of velocity over

the body of revoluLion. The laminar boundary layer is calculated

for the velocity distribution in the two-dimensional flow. The

properties of the boundary layer on the body of revolution are

then obtained from those for the two-dimensional flow.

Up to the present there does not seem to be a corresponding

procedure for turbulent flow. The purpose of the present note

is to develop one for turbulent flow.

ANALYSIS

Transformation between axi.ymmetric and two-dimensional flow

The equations of motion, total enthalpy, and continuity, for

a turbulent boundary layer over a body of revolution with

«l '< 1 and K6 << 1 are (Ref. 2),II rw
au a- p + a 3 uv

+ (p + -P') + - - 1p'r) + u( -

(2)

1
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3rw p u 3rw  -V + Iv)
+ = 0 (3)ax ay

By analogy with Mangler's transformation, let

3T - - I4
y wpur (4)

T -( P + TrTv)r (5)
ax w

1 P Ul (6)

1 =- Pv (7)

ylL = r WY (8)

LT' l1 (x l 1y I) = T(x,y) (9)

Pl(Xl) = p(x) (10)

= h(x,y) (ll)

11(x = I(x,y) (12)

l(xlyl) = (x,y) (13)

jl (xlyl) = j(x,y) (14)

and generalize Mangler's relation

2
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xrw 2

x = () dx (15)

0

to
x r w )

X= If (-T dx (16)
0

then

1 D L T L aYl
rw ay rw ay rw aYl aY

or
3 T1
p Yl (17)

Therefore, from (13), it follows that

U i(x,y) = i 1 (xlyl) (18)

Also

3 3( ax 1X 3( ) Yl
x x1 --5x + Yl ax

or with (8) and (16)

l +y rw dx (19)

Also

= 1 3 L L
rw dX rw ax

or, with (6), (7), and (19)

- + Trv = + r rw - uW Ly, aw
rw 1 1 p ) ~ ~i urw 2 dx (20)

3



NOLTR 69-47

Also from (8),

( r 3( 
(21)

Then

-- -+ Tr--r) ( IT rw
a 3- - ay

(22)

Also, from (16),

r w(-L--) r (23)dxdXl dx dx1

Far enough from the surface at sufficiently large Reynolds

numbers the term p u-viT is much larger than ii au so that the

term (pi -w u-- ), which is the total shear stress T, ir

practically equal to the turbulent stress -p u--v. At the wall,-U - au
the shear is p 2. The magnitude of the surface stress P W is,

however, fixed by the turbulent shear stress - v r further out.

Consequently, the total snear stress Tisassumed to behave like a
turbulent shear everywhere in the boundary layer. Then with

(18), (21), (22) and (23), (1) becomes

drw  l]  dPl(2
f(--L- [Pl u + (P11 + P- - -Y dx f ( -+-) 2- (24)

r
w

To remove tne terms it is sufficient that

r w

T (L 
(25)

4
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Equation (24), then becomes

u 1 au 1_ dp 1  aiT
PlUl x-- + ( + P1 v, - = - + Y=I (26)

the equation for two-dimensiondl flow.

Equation (2) for the total enthalpy is transformed in the

same way. The argument for the assumption that the total shear

stress T behaves like a turbulent shear everywhere in the

boundary layer is also applied to the total energy transfer Q

with the result that Q is assumed to behave like a turbulent energy

transfer everywhere in the boundary layer. Then (2) becomes

(aI = ay ( + Ulrl) (27)T, ax+ (P 1'- + iV (1+ul

where
rwf (?£)

Q = Q1 L
1 rw (28)

By use of (16), (19), (20), and (21), the equation of continuity

(3) becomes

@r Pu r ar 1 wr
1_1rwl_ f() + y wa T-fY ) rw dx

r ~ ~ L rw __ Ly 1 dr w,
rw 8 [w rL_ F f ( v + ,,) -- -- ]

=0

or

Plil a(Plv1 + P1 'V 1 )
+ = 0 (29)

axl ay'

the continuity equation for two-dimensional flow.
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If the boundary-layer equation of motion (1) is integrated

with respect to y from y = 0 to y = 6 and the continuity equation

(3) is used, the result is the momentum equation for the

boundary layer on a body of revolution, namely,

dO + due 6*, + dpe e dr (V) TwA Ue dx r w dx . W2 (30)
e eee PeUe

Equation (30) can be written as

dOrw Or W 6* Or dpe (T) wrw TTx4ue x(2 + 6) + we dx .... eTeU 2 r w (31)

From (8), (13) and (18) and the definition of 6 and 01, namely

6 = - (1 - ) dy

0 PeUe 

and

01 6 1 Plul (i- -- ) dy 1

o Peluel Uel

it follows that

6rw = 01L (32)

In the same way it follows that

w i

and therefore that

6* 61*
(34)

6



NOLTR 69-47

By using (13), (16), (25), (32), (33), (34), and (20) with y = 0,

equation (31) becomes the two-dimensional momentum equation,

dO1  eI  diI 1  61* dpe (VdxI1+ dx I k (2 +l ") + 11 e1 (V lw TWl
+ -- -- " e11 +P-v i = -- -1. Ue 1 a1 e1  Pelue l  e1 ue1

(35)

By integrating the boundary-layer total-enthalpy equation,

(2), from y = 0 to y = 6 and using the equation of continuity (3),

there is obtained the integral total-enthalpy equation for a

body of revolution, namely,

d+ dYe du e dpe dr dYd-x +e dU +  ed + T_+ Fw (-"-5 ae +dx -ex dx -e dx r w dx + - dx

Teue 5e ye
Y (pv) w+ (_ Qw (36)

Y e PeUe PeUeIe

From (8), (12), (13), (18), and the defi-.ition of 8 and BI ,

nameiy

, p - dy

o e e e

and

f1Plul 
I-1 = (i :!) dy 1

o Peluel lel

it follows that

ar w = 1L (37)

Then, with the same procedure that was used to obtain (35) from

(31), it follows that

7
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da l 8 dial 1 duel $ dP el (6 1"- 61) dIel1

a- - d+ d +d

I e1 Ue 1 Pe 1ie 1

+ (1-_ - 1) - Qw (38)
Iel Peluel PeluelIe!l

the integral total-enthalpy equation for two-dimensional flow.

The integral kinetic energy and other integral equations for flow

over a body of revolution can be transformed to two-dimensional

equations in the same way. The two-dimensional equations can,

of course, also be obtained directly from (26), (27) and (29).
rw

Up to this point the function f(-L) in (16) has not been

specified. A method of determining f(-- is to write (25) for

y = 0, thus

f(rw

Tw  =Tlw  rw (39)
(y-)

By using (13) and (18), (39) can be written as

rw  rw C
f( w) = L f (40)

L L Cf1

The friction coefficient is now expressed as a function of Re0 ,
Tw

Me' Fe , and the shape of the non-dimensional velocity profile.

The function is taken to be the same for axisymmetric as for

two-dimensional flow. That is, -w is assumed to be so small
that rw

that any effect of transverse curvature on the boundary-layer

flow that is independent of Re, Me, I ' and the non-dimensional

velocity profile is negligible. Then

8
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Tw
Cf = F(Re0 , M a , u )

and T
wi1

Cf = F(Re 0 , Me u

6*
where 11u(= L.--__) denotes the effects of the shape of the velocityu
profile; its use does not imply that the profiles are actually a

single-parameter family with H as the parameter. From (40) itu

follows that

F(R Tw
w

F(Re 0 , M el Hu) (41)

where Re0  Re0  from (32).
1w rw

If a power formula approximation is taken for the friction

coefficient then

Cf k
Wl k(42)

2 -Re n

and

Cf _ k(43)
2 Re6n

F(eee 1 ,

Tw
where k =k (i. M el T H). But at corresponding x andxi

6U 6 l* u e
-u eu1  M e=M 1T e= T e and T w= T . Therefore, k in

00ee elHel

(42) and (43) are equal at corresponding x and x Then from (40)

9
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rIw rw (81 n

-L-L)0

or with (32)

frw rw n+lf (- ) = - -)(44)

For laminar flow, n = 1 and Mangler's transformation, (15), is

obtained.

Non-dimensional form of equations

Equations (1), (2), and (3) can be written in a non-

dimensional form so that the Reynolds number does not appear,

just as for laminar flow (Ref. 3). Thus let

x

r rw

y = Req ReLs
Y* L L T Rep U

U * uu, u 1 I-=

- (45)_ Req _q Q ReLS

(U,-r) L = X Re q

(p ~ Reu L

P* P

P.

P*

p.

10
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Then (1) becomes, with (1 - p u v) = T,

PP U U*uo + (pP,v~u Re L-q + (ayL)p~ueRee L -q
axL ayLRe L

dp, 2 + S

dx*L Dy*LReL -q (46)

Equation (46) is independent of ReL if

s =q (47)

Then (46) becomes

u, au, dp, aT*

P+[ + (iTh -- , (48)

an equation independent of ReL. Now let

TW k
2 n

PeUe Ren

or by use of (45),

Pe e k q(-) kReq

T, w

u*eP*eG , n u O L n -nq

)'*e 0

For T*w to be independent of ReL it is necessary that

n
q - 1+n (49)

Equation (27), with Q k - - v'h and (45), becomes~ay

+ (p'v,)* 0 u a, (u*T*)

p*u, + [P*v, I+ IM, (50)
X*a*

11



NOLTR 69-47

The equation of continuity, (3), becomes

Srw WP ,  arw W[p*v, + (7 7 v) ,
+ [( = 0 (51)

For two-dimensiona3 flow, r = 1 in (51).

The conditions at the outer edge of the boundary layer become

U*e*(x ) I~e(X,), Pe(X*) (52)

and at the surface

u, = 0, v, = v,(x,), I*w = I*,(x*) or Q*w = Q*w(x*) (53)

Because (48), (50), and (51) are independent of Reynolds

number it follows from (45) and (49) that both the velocity profile

or U- and the total-enthalpy profile or are fixed

e n e

func('ions of Re n+T at a fixed 2 when the boundary conditinsLL L

given by ,52) and (53) are independent of Reynolds number and
U 2 e n 6* n
- is fixed. The indication is also that ReL n

n
and - ReL TT are independent of ReL. Moreover, tie local shearn

stress and local heat transfer vary as ReL- n+ ; therefore,

the total friction stress and the total heat transfer vary as
_ n

ReL  n+l if the boundary layer is either entirely laminar or

entirely turbulent. Because the profile drag of a body is

proportional to 6 at the trailing edge, the profile drag also variesL
_ n

as ReL n+l if the boundary layer is entirely laminar or entirely

turbulent.

12
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Because u* is independent of Reynolds number, the indication

is that the skin friction drops to zero at a point that is

independent of Reynolds number. Therefore, the separation point

is also independent of Reynolds number. The same conclusion follows

from the conclusion that the non-dimensional velocity profiles

are independent of Reynolds number. A requirement is that the

friction coefficient must be expressible as a power function of

Re Moreover, the non-dimensional velocity profiles and the

non-dimensional thicknesses at the initial point of the boundary

layer must be independent of Reynolds number.

If in (53) Q*w = 0 is used as a boundary condition, I

fixed, and the other boundary oonditions made independent of

ReL, a solution of (48), (50', . d (5.) gives I,(y2..v) and thus

i,(x,,0) or I*a(x*). Under these conditions I~a(X , ) is independent

of ReL. From the definition of the recovery factor r,

u 2

h = h + r - (54)a e 2

it follows that

2 2

Ia(X,) = I(X) - 2 (l-r) u- (55)

U2
Therefore, when 1 '- is fixed and the boundary conditions are

independent of ReL, it follows that r(x,) is independent of ReL.

13
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Relation between boundary-layer quantities in axisymetric and
in two-dimensional flow

From (45), (47), and (49) it follows that, with "bars"

dropped,

n (T w R e -' - * w L 252ReL =

Peue (Pe) ue)2 (56)

P.o U0;O

or
n

n+l
n (L) (Lw 

T *Wu Rex 2 L g(x/L) (57)P e Ue (Pe)(ue)

The R.H.S. of (56) and (57) are independent of Reynolds number ReL
u 2

if I and the bo.uidary conditions given by f52) and (53) are00

independent of ReL . Therefore, under these conditions the L.H.S.

are also independent of the Reynolds number ReL.

n

The quantity T-w 2 Rex  can be written as
Peue

n
nrw n - nTw ~~U n~ w ) ux1 n+l

T- n+lw Ren+l _Tw 1 (. uexx-- : 2 Rex = 2 (v- 1  i

Peue2  x Peluel Vei

or x n+l

n nn-d

C Rel = CRe n+L (58)1 xrw

at corresponding x and x1. Recall that at corresponding x and xl,

14
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Me = Me Te = , and Tw = T Also, from (32) and (33)

e _ _n -i I i ie i T e n+ I (L-) n+-
x Rex X Rexr n+l (59)

IJO (-EW) d
n~~l L nl xwi L_

and

* nl
* n-- n x rw n+ iI61 Ren+l 6* n+l L n1
Re -- Re x I(60)

(-W d x

0

at corresponding x and xI.

From (25) and (28) it follows that

Q Q1T T1
or

Qw Qlw (61)
Tw *Tlw

The Reynolds analogy factor is thus the same for corresponding

x and x locations in the axisymmetric and in the substitute

two-dimensional flow.

The Stanton number St is, with "bars" dropped,

Qw Q*wPwUwIwReLS
St Pe -(I a  (62)

or n

St ReLn+1 Q*w () ) i*a'lw (63)

15



NOLTR 69-47

or
n n

St Re Qnw(1) T G) (64)
e e *a-I*w

u
2

The R.H.S. of (63) and (64) are independent of ReL if I - and

the boundary coneitions given by (52) and (53) are independent of

ReL . Therefore, with these restrictions the L.H.S. are also

independent of ReL .

From the definition of St and with (12), (13), (18), (28),
n

and (44), the quantity St Re n+ can be written as
x

nn n-- Tn+-f rw)n in+lStSt~lI ea r( (n
St Re St Re

or x
( L r n+

n n (_- d n

St Ree x =x St nRe J (65)
x ( - )

By use of (37), there follows

n rw n

-Re n +

8 1 i 1 el

or

1 n n [ x ,rv7, n+l 1 i
_Re n+l-- Re n+
Xi xI  x x X (66)

6(--) d

16
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Application to cones in supersonic flow with attached nose shock

Lc L e and ue are independent of x.

Then it follows from (13) and (18) that e p and u = Ue;

therefore, pel and uel are alsY independent of x. Thus the

corresponding two-dimensional flow is that over a flat plate

at zero angle of attack. For this case equation (58) becomes

n n - n

C f Re = Cf Rex  (n+2) n+1 (67)
f1  x1  f x

at corresponding x and xl, with M( = Me, T = T e Iv
e1 e el e e1

Tw = T W Also,from (59)

n n 1
l Re n+ = e Re n+1 (n+2)n+ (68)x 1  x 1  x x

and from (60)

6* n n 1

- Ren+ = Re nil (n+2 )n+I
x1  x1  x x (69)

For a plate or cone with constant surface temperature the

reference length L can be replaced by x. Therefore, the

conclusion from (48), (50), (51), (52), and (53) that the local
n

shear stress varies as ReLn+T can be expressed as

nRen+l
Cf1 ReXl C1  (70)

and n

Cf Re n+ C2  (71)

17
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n n

Consequently, Ren+l is independent of xI and Cf Re is
1 1

independent of x. Therefore, the relation obtained from (67),

namely,

n
Cf Re n+l
Cf )( x = (n+2) (72)

xl

holds for all combinations of x and xI . In particular for Re x

Rexl, (72) becomes

n
Cf (n+2)ln+ (73)
Cf1

and for Cf = Cf , (72) becomes
£1

Rexl 1

Re n+2 (74)
x

For laminar flow n = 1 and (73) becomes the well-known relation

i Cf =V- (75)
Cf 1

and (74) becomes

Rexl 1  (76)

Rex  3

In Reference (4) Van Driest obtains the relation

Rex 1  1
- (77)

18
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for turbulent flow instead of (74). In going from equation (16)

to (17) and from (19) to (20) of Reference (4) it was assumed that

a quantity called "a" was very large. This means that Cf was

assumed to approach zero. From (42) or (43), this occurs when

Re -Co. From the character of friction formulas (see Ref. 5

for example), n - 0 as Re. - . Then (74) approaches (77).

Consequently, (j7) is a limiting relation for Re0  C.

For a plate or cone with constant surface temperature, the

conclusion from (48), (50), (51), (52), and (53) that

0 n
-Re L nT is independent of ReL becomes

01 n
1 Re x l 1 = const

and

n

- Re = const
X x 2

n n01 ne 8 ex-

Therefore, - R l is independent of x and 2 Re is

independent of x. Consyquently, the relation obtained from (68),

namely,

1 1
( Rex1 n l

= (n+2) (78)
7 Rex

holds for all combinations of x and xI . In particular, for x =x l

and Re = Re (78) becomesx x

10e ,. n+l
=. (n+t-) (79)

19
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In the same way

* 1-=tn+2 n + l

(n+2) (80)

From (65) it follows that when the body of revolution is

a cone,

n n n

St1 Rexn+ St Rexn+-l (n+2)- n+ (81)
1

and from (66) that,

n n i

Re n+ = Re n+± (n+2) n  (82)x I  eX 1 X X

From (67) and (81) it follows that

St1  St (83)

Cfl Cf

or

St Cf
StIC fl (84)

The relation between Cf and C for Rex = Re is given by (73);

therefore, for Re = Re (84) becomesx x1

n
St (n+2) n+l (85)
St1

By dividing (82) by (81), then using (85), which requires

Rex = Re , and putting x = xl, the result is a relation similar

to (79) and (80), namely,

20
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(n+2)i (86)

The average friction coefficient on a cone is defined as

x

[rw wdx
D __

F =PeUe2 2 A (87)

2 Aw PeU e f2 2 r w d

or, with rw = ax

Re

C Rex Cf Rex d Rex  (88)

For flow over a flat plate

C D f J rw dxlCFI- P 2e2
2 Xl Peluel 2

2 X1

or

Rex 1

C (71) Jo Cf1 d Rex1  (89)CF1  Rx f

From (71)

Cf 2

Ren+lRe
x

then (88) gives
n

CF 2C Re n+ + (90)

21
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Also, from (70)

Cfl = l n '

Rex +l

then (89) gives

n

C = C Re (n+l) (91)F1  1 (nl

From (90) and (91) it then follows that

n
CF C2 Rex 1

-- 2 C n (n+2T (92)
1 Re Xl

xl1

C2
The ratio - is evaluated by putting (70) and (71) into (67) with

the result

C 2 n _
C2 = (n+2)n+l  (93)

1

Then, for Re = Rex, (92) becomesx

C F 2
1 = (94)

A. (n+2) f

Equation (94) holds for equal Reynolds numbers based on distance

along the surface, and for equal Mach nuirbers outside the
Tw

boundary layer and equal T-
e

22
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The average Stanton number on a cone is defined as

fXrwQwdx

ST = fx (95)
P e Ue (I a-I w ) | r wdx

for Ia' Iw independent of x. With rw = ax, (95) becomes

Re

ST 2 2 St Re d Re (96)
Re 2  f0x

For flow over a flat plate ST is defined by

X1lQwldX 
1

Rex 1u o St d Re (97)

ST1 = Re xd R 1

for Ia1' I independent of x, .

For r plate or cone with constant Tw the conclusion from

(48), (50), '51), (52), and (53) that the local heat transfer
n

varies as ReL  can be expressed as

Q n

, Re, = C3

or, with

St Qw
St = Pue (I a-I w

23



NOLTR 69-47

as n

St Re n+i i P 1
x e Uea 'a-'*W (98)

Also,
n _

St. Rex I  = C )
1 14I~a1 I~1

.. 4xP 1 ue 1 T*ai I*W 1 (9*9)

Then, from (96) and (98) it follows that

np u 1 R-n+ n+l,
ST = 2C3 (e) (Re) Rw  (n-') (100)

3 Pe) Ue '*a' *w X n+2

and from (97) and (99) that

n

ST = C4 A)) Re (n+l) (101)
1 Pe 1 e iI*al-I*w 1  x

For Rex  Rexl, (100) and (101) give

p u u

ST 2 c3 1 - *W1 _ Ue)
ST1  n+2 C4  I*a-Iw 0) UL (102)

From (98), (99), and (81) it follows that,

p u
St C3 (I*al- INwl ( ) (UO) n-

-t 3 1- 1 = (n+2)n+l (103)

StI  C4 (I*a-I*w) Pa uW7"0)l ( )i
e 1 61-

Then from (102) and (103)

ST 2

ST1 1 (104)

(n+2)n
--
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Therefore, from (94) and (104)

ST C F
'§T- =  C F 1(105)

or

ST ST1 = (106)
CF CF1

for equal Reynolds numbers based on distance along the surface,
Tw

equal Me, and equal :H on cone and flat plate.

Tv obtain the relation between the recovery factor r on a

core and on a flat platp Ipt the conditions at infinity for the

cone boundary layer be those in an ..nviscid flow behind the nose

shock and on the cone surface. The boundary conditions (52)

and (53) then become

U*e = 1, '*e = 1, P*e = const, u*w = 0, V*w = 0.

Also, for the zero heat-transfer case, Q*w = 0.

Assume that (48), (50), and (51) are then solved and

I"w = I*a obtained. Because I*a is independent of ReL it follows

that for a cone I*a is independent of Re . The transformation

(12) then gives

I =I

or

I =2
aI  a
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The transformations (12) and (18) also give

el e

and

U =U
e e

where, for cone and olate the conditions at the boundary-layer

edge are the same as those at infinity; that is ) e = ( )0"

Then I*a = *a I *e= = 1 ue = ue = 1, and ( )

Then it follows from (55) that rI = r. That is, the recovery

factors for a cone and plate are equal. Moreover, because I*a

and I are independent of Rex , r and rI are independent of

Re.
x

DISCUSSION

The transformation between axisymmetric and two-dimensional

turbulent boundary-layer flow requires that the function f(

in equation (16) be known. Equation (40) is a relation for
rw rw

f(-) but because Cfl is unknown until f(L-) is known the relation

is not convenient. By approximating the friction coefficient by

a power formula (eqs. 42 and 43) a convenient relation, (eq. 44),
rw

is obtained for f( -). For incompressible flow, power formulas

are known to be good approximations for Cf. Figure II 4 of

Reference 5 shows how the Young, Blasius, and Falkner power

formulas closely approximate the more involved and more accurate

Schoenherr, Coles, Schultz-Grunow, and Squire and Young, friction

formulas over the range of Re0 between 102 and 107.
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When the relation for f(-) given by (44) is applied to aTw

flow in which Me, ~e , and H u vary along the body, the exponent

n remains fixed. That is, Cf must vary with Re e in the same wayT
w

for the range of Me, e ' and velocity-profile shapes encountered

in a particular case,

One method for obtaining Cf for compressible flow from Cf

for incompressible flow is the "reference-enthalpy me-thod"

(Ref. 6). In this method, k in (42) is replaced by the product

of k and a function of Mach number and wall-tempera,:ure ratio.

The exponent n remains unchanged. Thus, if k and n are known

for incompressible flow the relation (42) becomes

Cf k (p)n~ r

2T Re n Ile Pe
e

for compressible flow (Ref. 7). Because the Mach number and

wall-temperature ratio are the same at corresponding - and x I

(- r ) and ( r ) are also the same, Moreover, introducing a function

of H to allow for velocity-profile shape, as in the Ludwig-

Tillman formula (Ref. 8),

Cf .123 - 781u

= .268 10Ree

sLill results in (44) because Hu is the same at corresponding

x and x1 because the velocity profiles are similar at

corresponding x and xI.
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In conclusion it is noted that because a power form for a

friction formula is approximate, so are all the results, including

those that follow from non-dimensionalization to the form (48),

(50), and (51). In contrast, for laminar flow n = 1 exactly,

and all the conclusions for laminar flow are exact.
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